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Structure Analysis of Modulated Molecular Crystals.
V. Symmetry Restrictions for One-Dimensionally Modulated Crystals
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Abstract

Symmetry restrictions that apply to amplitudes of
displacement waves when atoms or rigid molecules
are located at special positions in a modulated struc-
ture are tabulated for various crystallographic sym-
metry elements. The tables can be used for both the
atomic and molecular models and are valid for
harmonics of arbitrary order.

Introduction

The (3 + 1) superspace-group formalism described by
de Wolftf (1974) and de Wolff, Janssen & Janner
(1981) has found widespread application in the

* Permanent address: Institute of Physics, Czechoslovak
Academy of Sciences, Na Slovance 2, 180 40 Praha 8, Czecho-

slovakia.

0108-7673/88/061051-05$03.00

description of one-dimensionally modulated crystals.
For a given space group the amplitudes of the
displacement waves are restricted when an atom or
rigid molecule is located at a special position of the
basic space group (e.g. Yamamoto, 1980, 1983;
Kucharczyk, Paciorek & Uszynski, 1986; Gao,
Gajhede, Mallinson, Petficek & Coppens, 1988). We
present here a simple method for obtaining the restric-
tions and the derivation of general rules. The results
are summarized in Table 1.

In order to illustrate our derivation, we will first
summarize a number of relevant expressions given
by de Wolff, Janssen & Janner (1981). A four-
dimensional symmetry operation S is defined by

A
S(xy, X2, X3, Xq) = (x4, X3, X3, X4)

where the x; are the coordinates with respect to the
four-dimensional bases. S is described by the matrix

© 1988 International Union of Crystallography
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Table 1. Symmetry restriction of translational and
rotational displacements as a function of symmetry

Table 1. (cont.)

Symbol of Translational Rotational
operators symmetry (US, U5, UD (V3 Vi, V)
Symbols of symmetry operators are chosen as in International operation 7 (U3, U, UY) (Vi VE, V)
Tables for Crystallography (1983), Tables 11.2 and 11.3. A minus
sign indicates the component is not restricted. Non-zero restricted 4 0 (0,0, -) (0,0,-)
values are indicated by the symbols A, B, C and D, which are 0,0,z 0,0,-) (0,0,-)
defined as local values for a given 7. 174 (A, B,0) (C.D,0)
Symbol of Translational Rotational (B,-A,0) (D,-C,0)
symmetry (Ug, U, UY) (V2 Vi, VO
operation 7 (U3, U3, UY) (V5, Vi, VD) 12 Eg g g; Eggg;
e=1 3/4 (A, B,0) (C, D,0)
(=B, A0) (=D, C,0)
2 0 0,0, -) (0,0, -)
0,0,z (0,0, -) (0,0, -) 6 0 (0,0, —-) 0,0,-)
0,0,z 0,0, -) (0,0, -)
1/2 (-,-,0) (-, -,0)
(-,—,0) (-,-,0) 1/6 (A/2-V3B/2, A,0) (C/2-V3D/2,C,0)
(V3A/2+B/2,A,0) (V3C/2+D/2,C,0)
m 0 (-,-,0) (0,0, -) .
x50 (-,-,0 0,0,-) 1/3 (0,0,0) (0,0,0)
(0,0,0) (0,0,0)
1/2 (0,0,-) (-,-,0)
(0,0, -) (-,-,0) 1/2 (0,0,0) (0,0,0)
(0,0,0) (0,0,0)
Hexagonal 0 (A A=) (C,-C,0)
tetragonal (B,B,—-) (D,-D,0) 2/3 (0,0,0) (0,0,0)
m (0,0,0) (0,0,0)
X, X, 2 1/2 (A, -A,0) (G C-) ---
(B,~B,0) (D, D, -) 5/6 (A/2+V3B/2, A, 0) (C/2+V3D/2, C,0)
(—V3A/2+B/2,A,0) (-V3C/2+D/2,C,0)
Hexagonal 0 (A -A~) (C,C0)
tetragonal (B,—B,-) (D, D,0) g=-1
m
X, ~X, z 1/2 (A A0) (C,-C,-) 1 0 - = (0,0,0)
(B, B,0) (D,-D,-) 0,0,0 (0,0,0) - =)
Hexagonal 0 (A 24, ) (-,0,0) 1/2 (0,0,0) - ==
m (B,2B, ) (-,0,0) (== -) (0,0,0)
X, 2x, z
1/2 (-,0,0) (C,2C,-) 2 0 (-,-,0) (-,-,0)
(-,0,0) (D,2D, -) 0,0,z 0,0,-) 0,0, -)
Hexagonal 0 (2A, A, -) 0,-,0) 1/2 0,0, -) (0,0, -)
m (2B, B,-) 0,-,0) (-, -0 (=, —,0)
2x, x, z
1/2 0,-,0) C,C,-) Hexagonal 0 (A, -A -) (C,-C,-)
0,-,0) (2D, D, -) tetragonal (B, B,0) (D, D,0)
2
Hexagonal 0 (-,0,-) (C,2C,0) x,x,0 1/2 (A A 0) (C, C,0)
m (-,0,-) (D,2D,0) (B,-B,-) (D,-D,-)
x, 0,z
1/2 (A,2A4,0) (-,0,-) Hexagonal 0 (A A -) (C,C,-)
(B,2B,0) (-,0,-) tetragonal (B,-B,0) (D,~-D,0)
2
Hexagonal 0 0, -,-) (2C, C,0) x,—x,0 1/2 (A, ~A0) (C,-C,0)
m o, -, - (2D, D,0) (B, B, -) (D, D, -)
0,5,z
1/2 (2A, A, 0) o, -, - Hexagonal 0 (A, 24, -) (G, 2C,-)
(2B, B,0) 0,-,-) 2 (-,0,0) (-,0,0)
x,0,0
3 0 0,0,-) 0,0, -) 1/2 (-,0,0) (-,0,0)
0,0,z 0,0, -) 0,0, -) (A 24, -) (C,2C,-)
1/3 (A/2-V3B/2, A, 0) (C/2-V3D/2,C,0) Hexagonal 0 (2A, A, -) (2C, C,-)
(V3A/2+B/2,A,0) (V3C/2+D/2,C,0) 2 0, -, 0) 0, -, 0)
0,50
2/3  (A/2+V3B/2,A,0) (C/2+V3D/2,C,0) 1/2 (0, -, 0) (0, -, 0)
(-vV3A/2+B/2, A, 0) (-v3C/2+D/2, C,0) 2A, A4, -) (2C,C,-)
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Table 1. (cont.)

Symbol of Translational Rotational
symmetry (Uz, Ug, U?) (V3, Vs, Vo)
operation 7 v, Ui, U (Vi, Vi, VD)
Hexagonal 0 (-,0,-) (-0,-)
2 (A,24,0) (C,2C,0)
X,2%,0 e e
1/2 (A, 24,0) (C,2C,0)
(=, 0,-) (-,0,-)
Hexagonal 0 0,-,-) 0,-,-)
2 (2A, A,0) (2C, C,0)
2%, %,0 e e
1/2 (2A, A,0) (2C, C,0)
0,-,-) 0,-,-)
m 0 0,0, -) (-,-,0)
x, 50 (=,-,0) (0,0,-)
1/2 (- -.0) 0,0, -)
(0,0,-) (-,-,0)
4 0 0,0,-) (0,0,0)
0,0,z (0,0, 0) (0,0, -)
1/4 (0,0, A) 0,0,C)
0,0, —A) 0,0,-C)
1/2 (0,0,0) (0,0, )
0,0, -) (0,0,0)
3/4 (0,0, A) _E(;,O,C)
0,0, A) (0,0, C)
equation
Xy $i X,
X, S, X5
+ =l (1)
X3 S3 X3
X4 é X4

where R and m* are 3x3 and 1x 3 matrices respec-
tively and £ = +1. R, m* and ¢ describe the rotational
part of S, while the translational part is represented
by s=(s,, 5,, 53) and &.
The elements of the rotational part of the operator
are restricted by the equation
m*=¢eq—qR 2)

where q is the modulation vector, which can be written
as the sum of its irrational and rational components,
q=gq; +q,. Substitution in (2) gives

m*=¢q,—q,R
and (3)
0 = €q; —qiR-
The intrinsic rotational increment of the coordinate
X4, T, is defined as
T=56-4q,S. (4)
The displacement of the symmetry-related atom is
related to that of the original atom through the
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equation
u'(x})=Ru[e(x;— 6 +m*r)]. (5)

The displacement function u is a periodic function,
which in its general form is written as a sum of sine
and cosine components (Petiitek, Coppens & Becker,
1985):

u(x,)= Y [U*(n)sin2mnx, +U”(n) cos 2mnx,],
n=0

(6)

where n is the order of the harmonic.

General rules for restrictions

A special position of a space group is not changed
by at least one of the symmetry operators (excluding
the identity operation), or

r=Rr+s. (7

A set of such operators forms a point group. From
(7) it follows that an intrinsic part of s, which rep-
resents the projection of s into an invariant subspace
of the matrix R, is equal to zero. Equation (5) can
be rewritten for this special position by first using
(3), which gives

u'(x3) =Ru[e(x;— 5+ eq,r—q,Rr)].
Substitution of (7) leads to
u'(x;) =Ru[e(xi— 7+ (e —1)q,1)]

Since the displacement of the atom must be unique
u'(x3) =u(xy), or

u(x4) = Rufe[xi—7+(e —1)q,r]}. (8)

For a molecular displacement model the atomic
displacements may be described in terms of transla-
tions and rotations of the rigid molecule. In the
rectilinear approximation one obtains

u(xs) = U(xy) +V(x,) X (r—p), 9

where p is the center of rotational displacement of
the molecule, and U and V are vectors describing the
translational and rotational molecular displacements,
respectively.

For a rigid molecule occupying a special position
there are two alternative ways of describing the dis-
placement of a symmetry-related atom within the rigid
molecule. One may directly apply the transformation
law (8), or use the rigid-body condition (9) with the
transformed atomic position. Thus, the following two
equations must be satisfied simultaneously:

u'(xi) =RU{e[x;— 7+ (e —1)q,p]}
+R(V{e[xt—1+(e—1)q,pl} X (r—p))
(10a)
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and
u'(xg) =U(x3) +V(xy) X (Rr+s—p). (10b)
It follows that
U(x3) =RU{e[x.— 7+ (e ~1)q,p]} (11a)

V(x}) =(det R)RV{g[x;—7+(e—1)q,p]}. (11b)

The condition (11a) for the translational displace-
ment of the rigid molecule is the same as that for the
individual atomic displacements of an atom at a
special position, so that it can be used in both cases.
Equations (11) can be rewritten for individual har-
monics by using the Fourier summation (6) and the

substitutions
x=nx;, and

T=nr—(e—-1)q,p (12)

U*(n)sin 2ax+U”(n) cos 27x
=RU*(n) sin [27e(x - 7)]

+RU’(n) cos [2me(x — 7)] (13a)

V*(n)sin27wx+V”(n) cos 2mx
= (det R)RV*(n) sin [27e(x — 7)]

+(det R)RV’(n) cos [27e(x—7)]  (13b)
(note that det R is positive for a proper, and negative
for an improper axis). Equations (13) make the dis-
cussion independent of the order of the harmonics.
As (13a) and (13b) are similar, we will discuss mainly
the former expression.

It is useful to refer the vectors in (13a) to the
orthonormal coordinate system with the z axis along
the rotational axis of (det R)R. The following con-
clusions can be drawn.

(1) The solution of the homogeneous linear system
of equations (13a) for e=—1 is independent of 7.
The solution for 7 # 0 can be derived from the solution
for 7=0 by using the transformation (as described
in the Appendix*)

U*(n) =Ug(n) cos 7+ U}(n) sin n7

U’(n)=-Ugj(n) sin 77+ U}(n) cos w7.  (14)
This is in accordance with the fact that for supersym-
metry operators with & =—1, 7 can be arbitrarily
changed by selecting a different origin in four-
dimensional space (see de Wolff, Janssen & Janner,
1981; Petticek, Coppens & Becker, 1985).

* The Appendix has been deposited with the British Library
Document Supply Centre as Supplementary Publication No.
SUP51099 (3pp.). Copies may be obtained through The Executive
Secretary, International Union of Crystallography, § Abbey
Square, Chester CH1 2HU, England.
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(2) Since z' = (det R)z, the z components of U*(n)
and U’(n) have to be zero for supersymmetry
operators with £ =1, unless =0 and 7=1/2 for
det R=1 and det R= -1, respectively.

(3) The x and y components of U*(n) and U’(n)
have to be zero for supersymmetry operators with
£ =1unless T=x¢/(2m) (¢ being a rotational angle
of R) or 7=+¢/(2m)+3 for det R=1and —1 respec-
tively. The non-zero solutions have the form

Uj(n)=+U(n)

Ui(n)=FU}(n) 13

where the upper sign is for

T=¢@/2m (detR=1)

or

T=¢/27+3 (detR=-1)

and the lower sign is for

T=—@/27 (detR=1)

or

T=—¢@/27+3} (detR=-1).

Note that (15) implies that the vectors [U3(n),
U3(n)] and [U%(n), U}(n)] have the same length
and are perpendicular.

Tables of restrictions

Equation (13) can be used to derive the restrictions
for translational and rotational amplitudes. They are
listed in Table 1 for both ¢ =1 and £ = —1. In Table
1, 7 is as defined by (12). Its value modulo 1 is to be
used to obtain the appropriate restrictions. For a
supersymmetry operator with e =1, (12) becomes
7= n7. In this case all possible 7 values can be found
from the equation

m7+m(q,.s,)=1 (I being integer)

(see Petfitek, 1986), where m is the order of the
rotation, and s, is an intrinsic part of s. But this s, is
equal zero [see (7)], and thus all possible values of
T are 0, 1/m, 2/m,...,(m—1)/m. As 7 can be
arbitrarily changed by a shift of origin for supersym-
metry operators with € =—1, only commonly used
values of 7 have been selected. Equation (14) can be
used to calculate restrictions for other choices of 7.

Only the most important orientations of operators
and modulation vectors are tabulated. Others can be
derived by proper permutation.
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Abstract

The plane-wave theory of a three-crystal Laue inter-
ferometer is presented in terms of the amplitudes
diffracted by a single slab in the Laue case, using
Zachariasen’s formalism. Successive applications of
the single-slab expressions for the amplitudes lead to
the final intensities of the interfering beams present
on the back side of the third crystal slab. Numerical
examples for X-ray and neutron diffraction show
clearly the different contrast relationships in the two
cases.

1. Introduction

The theory of a three-crystal symmetric Laue inter-
ferometer for spherical waves, in the case of zero
absorption (neutrons or X-rays), has been developed
by Bauspiess, Bonse & Graeff (1976). Such a theory
contains the plane-wave situation as a particular case.
An equivalent treatment, with full consideration of
absorption, has also been presented by Petrascheck
(1979).

Other treatments have appeared in the literature
for the plane-wave situation (Bonse & Hart, 1965;
Bonse & te Kaat, 1971) and zero or small absorption,
for applications to neutron diffraction (Rauch &
Suda, 1974; Staudenmann, Werner, Colella &
Overhauser, 1980).

The spherical-wave treatment enables one to evalu-
ate the intensity distribution as a function of position

0108-7673/88/061055-05$03.00

on the back of the third crystal slab of the inter-
ferometer. While such information is valuable in
evaluating the overall performance of an inter-
ferometer in terms of the residual strain resulting
from crystal defects and fastening techniques, quite
often in designing an interferometer the attention is
concentrated on the overall counting rate, namely on
the integrated intensity emerging from the third slab,
for which a plane-wave theory is adequate. Parseval’s
theorem, in fact, assures us that the integrated
intensities are the same whether a plane- or a
spherical-wave treatment is employed (Kato, 1968).

In this paper we present a very simple and straight-
forward derivation for the integrated intensities of
some of the beams present behind the third slab of
an interferometer made up with three slabs set for
Laue diffraction (asymmetric), with full consideration
of absorption, so that the formalism can be used in
the X-ray case when absorption is important.

We will treat the case of a single slab first, and
derive expressions that will then be combined in such
a way as to obtain in a straightforward fashion the
amplitudes of the waves multiply diffracted by a stack
of crystal slabs, as a function of a global phase shift
B, introduced along one of the interfering beams. The
only critical assumption here is that all the various
slabs are exactly coherent in space, which is true when
monolithic interferometers are used.

Use will be made throughout this paper of
the dynamical theory formalism developed by

© 1988 International Union of Crystallography



